Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687923

RESUMO

Lightning strikes are the main cause of transmission line faults, and the accurate lightning current number is an important basis to guide scientific lightning protection. The use of sensors with excellent sensing performance to carry out lightning current monitoring on transmission lines is beneficial to the accumulation of key parameters of original lightning strikes, so it is necessary to study the lightning current measurement structure of transmission lines. In this paper, an optical current-sensing unit is used to monitor the lightning current on transmission lines. A measuring structure that can monitor key parameters of the lightning current under different types of lightning strikes is proposed. First, establish the lightning current return channel model and the equivalent model of the tower, study the influence of the transmission tower on the current in the lightning channel, and analyze the direct measurement position of the lightning current on the tower; establish the multi-wave impedance model of the tower, and build a multi-base tower. The simulation model of the transmission system analyzes the transmission characteristics of the lightning current on the transmission line and the lightning protection line in the case of different types of faults; from the perspective of the measurement of key parameters of the lightning current, the lightning current measurement structure of the transmission system is constructed to analyze different lightning strikes. The measurement effect of each monitoring position in the case of a lightning strike and the waveform characteristics of the fault current in the case of insulator flashover are analyzed.

2.
Front Oncol ; 12: 829190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494028

RESUMO

Choriocarcinoma is a cancer that usually occurs in the uterus during pregnancy. Although choriocarcinoma with renal metastasis and spontaneous renal hemorrhage is very rare, it can occur. We describe a rare case of metastatic choriocarcinoma, wherein the patient presented with acute abdominal pain due to a subcapsular hematoma secondary to a bleeding renal metastasis. We performed a laparoscopic nephron sparing surgery to remove the tumor and control the bleeding. A retrospective analysis revealed that metastasis was detected on 18F-fluorodeoxyglucose PET/CT, but not on CT alone. To our knowledge, a case of choriocarcinoma with such symptoms and treatment has not been described in recent literature. Our case illustrates that acute bleeding from a renal metastasis can be effectively managed by laparoscopic nephron sparing surgery. It also demonstrates the advantage 18F-FDG PET/CT may have in the evaluation of metastatic choriocarcinoma.

3.
Sensors (Basel) ; 19(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766634

RESUMO

Accurate and reliable lightning current data are the basis of lightning protection design. To measure lightning current data at different measurement locations in a transmission system, the limitations of traditional lightning current sensors are analyzed, and optical current sensing technology is adopted, which has the advantages of no magnetic saturation and no bandwidth limitation. Compared with traditional application environments, the sensing technology is used in special environments in transmission systems. This paper analyzes the influence of environmental factors on sensors, and combines the extreme environmental requirements, such as temperature and insulation requirements, to study the sensor. Starting from the sensitivity, the sensing characteristics of the sensor are analyzed. The sensor is designed according to three aspects: sensing material selection, spatial measuring position, and sensing material size optimization, such that it can satisfy the different measurement requirements of towers, overhead ground wires, and transmission lines, respectively. The experiments indicate that the developed sensors can meet the measurement sensitivity requirements of different types of lightning strikes. The experimental results of sensors exhibit a reasonable amplitude measurement accuracy, linearity, and waveform measurement capability. These results provide important theoretical and experimental bases for the application of optical current sensing technology to the measurement of the lightning current of transmission systems.

4.
Sensors (Basel) ; 19(13)2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31284673

RESUMO

When applying an optical current transformer (OCT) to direct current measurement, output signals exhibit a low signal-to-noise ratio and signal-to-noise band overlap. Sinusoidal wave modulation is used to solve this problem. A double correlation detection algorithm is used to extract the direct current (DC) signal, remove white noise and improve the signal-to-noise ratio. Our sensing unit uses a terbium gallium garnet crystal in order to increase the output signal-to-noise ratio and measurement sensitivity. Measurement errors of single correlation and double correlation detection algorithms are compared, and experimental results showed that this measurement method can control measurement error to about 0.3%, thus verifying its feasibility.

5.
Opt Express ; 25(24): 30732-30753, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29221100

RESUMO

The detection of cloud and aerosols using a modified retrieval algorithm solely for a ground-based micropulse lidar (MPL) is presented, based on one-year data at the Semi-Arid Climate Observatory and Laboratory (SACOL) site (35.57°N, 104.08°E, 1965.8 m), northwest of China, from March 2011 to February 2012. The work not only identifies atmosphere particle layers by means of the range-dependent thresholds based on elastic scattering ratio and depolarization ratio, but also discriminates the detected layers by combining empirical thresholds of the atmosphere's thermodynamics states and scattering properties and continuous wavelet transform (CWT) analyses. Two cases were first presented in detail that demonstrated that the modified algorithm can capture atmosphere layers well. The cloud macro-physical properties including cloud base height (CBH), cloud geometrical thickness (CGT), and cloud fraction (CF) were then analyzed in terms of their monthly and seasonal variations. It is shown that the maximum/minimum CBHs were found in summer (4.66 ± 1.95km)/autumn (3.34 ± 1.84km). The CGT in winter (1.05 ± 0.43km) is slightly greater than in summer (0.99 ± 0.44km). CF varies significantly throughout year, with the maximum value in autumn (0.68), and a minimum (0.58) in winter, which is dominated by single-layered clouds (81%). The vertical distribution of CF shows a bimodal distribution, with a lower peak between 1 and 4km and a higher one between 6and 9km. The seasonal and vertical variations in CF are important for the local radiative energy budget.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...